Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 773
Filtrar
1.
Chem Senses ; 492024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38591752

RESUMO

The scent of musk plays a unique role in the history of perfumery. Musk odorants comprise 6 diverse chemical classes and perception differences in strength and quality among human panelists have long puzzled the field of olfaction research. Three odorant receptors (OR) had recently been described for musk odorants: OR5AN1, OR1N2, and OR5A2. High functional expression of the difficult-to-express human OR5A2 was achieved by a modification of the C-terminal domain and the link between sensory perception and receptor activation for the trilogy of these receptors and their key genetic variants was investigated: All 3 receptors detect only musky smelling compounds among 440 commercial fragrance compounds. OR5A2 is the key receptor for the classes of polycyclic and linear musks and for most macrocylic lactones. A single P172L substitution reduces the sensitivity of OR5A2 by around 50-fold. In parallel, human panelists homozygous for this mutation have around 40-60-fold higher sensory detection threshold for selective OR5A2 ligands. For macrocyclic lactones, OR5A2 could further be proven as the key OR by a strong correlation between in vitro activation and the sensory detection threshold in vivo. OR5AN1 is the dominant receptor for the perception of macrocyclic ketones such as muscone and some nitromusks, as panelists with a mutant OR5A2 are still equally sensitive to these ligands. Finally, OR1N2 appears to be an additional receptor involved in the perception of the natural (E)-ambrettolide. This study for the first time links OR activation to sensory perception and genetic polymorphisms for this unique class of odorants.


Assuntos
Ácidos Graxos Monoinsaturados , Receptores Odorantes , Olfato , Humanos , Olfato/genética , Odorantes , Receptores Odorantes/metabolismo , Genótipo , Lactonas , Percepção
2.
Genesis ; 62(2): e23593, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562011

RESUMO

The mammalian sense of smell relies upon a vast array of receptor proteins to detect odorant compounds present in the environment. The proper deployment of these receptor proteins in olfactory sensory neurons is orchestrated by a suite of epigenetic processes that remodel the olfactory genes in differentiating neuronal progenitors. The goal of this review is to elucidate the central role of gene regulatory processes acting in neuronal progenitors of olfactory sensory neurons that lead to a singular expression of an odorant receptor in mature olfactory sensory neurons. We begin by describing the principal features of odorant receptor gene expression in mature olfactory sensory neurons. Next, we delineate our current understanding of how these features emerge from multiple gene regulatory mechanisms acting in neuronal progenitors. Finally, we close by discussing the key gaps in our understanding of how these regulatory mechanisms work and how they interact with each other over the course of differentiation.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato/genética , Regulação da Expressão Gênica , Epigênese Genética , Mamíferos
3.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612665

RESUMO

Baleen whales (Mysticeti) possess the necessary anatomical structures and genetic elements for olfaction. Nevertheless, the olfactory receptor gene (OR) repertoire has undergone substantial degeneration in the cetacean lineage following the divergence of the Artiodactyla and Cetacea. The functionality of highly degenerated mysticete ORs within their olfactory epithelium remains unknown. In this study, we extracted total RNA from the nasal mucosae of common minke whales (Balaenoptera acutorostrata) to investigate ORs' localized expression. All three sections of the mucosae examined in the nasal chamber displayed comparable histological structure. However, the posterior portion of the frontoturbinal region exhibited notably high OR expression. Neither the olfactory bulb nor the external skin exhibited the expression of these genes. Although this species possesses four intact non-class-2 ORs, all the ORs expressed in the nasal mucosae belong to class-2, implying the loss of aversion to specific odorants. These anatomical and genomic analyses suggest that ORs are still responsible for olfaction within the nasal region of baleen whales, enabling them to detect desirable scents such as prey and potential mating partners.


Assuntos
Baleia Anã , Receptores Odorantes , Animais , Mucosa Nasal , Olfato/genética , Afeto , Cetáceos , Receptores Odorantes/genética
4.
Nutrients ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542732

RESUMO

The sense of smell plays an important role in influencing the eating habits of individuals and consequently, their body weight, and its impairment has been associated with modified eating behaviors and malnutrition problems. The inter-individual variability of olfactory function depends on several factors, including genetic and physiological ones. In this study, we evaluated the role of the Kv1.3 channel genotype and age, as well as their mutual relationships, on the olfactory function and BMI of individuals divided into young, adult and elderly groups. We assessed olfactory performance in 112 healthy individuals (young n = 39, adult n = 36, elderly n = 37) based on their TDI olfactory score obtained through the Sniffin' Sticks test and their BMI. Participants were genotyped for the rs2821557 polymorphism of the human gene encoding Kv1.3 channels, the minor C allele of which was associated with a decreased sense of smell and higher BMIs compared to the major T allele. The results show that TT homozygous subjects obtained higher TDI olfactory scores and showed lower BMIs than CC homozygous subjects, in all age groups considered. Furthermore, the positive effect of the T allele on olfactory function and BMI decreased with increasing age. The contribution of the genetic factor is less evident with advancing age, while the importance of the age factor is compensated for by genetics. These results show that genetic and physiological factors such as age act to balance each other.


Assuntos
Transtornos do Olfato , Adulto , Humanos , Idoso , Odorantes , Índice de Massa Corporal , Olfato/genética , Polimorfismo Genético , Limiar Sensorial/fisiologia
5.
Cell Rep Methods ; 4(2): 100714, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412833

RESUMO

Anopheles gambiae uses its sense of smell to hunt humans. We report a two-step method yielding cell-type-specific driver lines for enhanced neuroanatomical and functional studies of its olfactory system. We first integrated a driver-responder-marker (DRM) system cassette consisting of a linked T2A-QF2 driver, QUAS-GFP responder, and a gut-specific transgenesis marker into four chemoreceptor genes (Ir25a, Ir76b, Gr22, and orco) using CRISPR-Cas9-mediated homology-directed repair. The DRM system facilitated rapid selection of in-frame integrations via screening for GFP+ olfactory sensory neurons (OSNs) in G1 larval progeny, even at genomic loci such as orco where we found the transgenesis marker was not visible. Next, we converted these DRM integrations into T2A-QF2 driver-marker lines by Cre-loxP excision of the GFP responder, making them suitable for binary use in transcuticular calcium imaging. These cell-type-specific driver lines tiling key OSN subsets will support systematic efforts to decode olfaction in this prolific malaria vector.


Assuntos
Anopheles , Malária , Neurônios Receptores Olfatórios , Animais , Humanos , Olfato/genética , Anopheles/genética , Mosquitos Vetores/genética
6.
J Evol Biol ; 37(2): 238-247, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38297391

RESUMO

The number of functional genes coding for olfactory receptors differs markedly between species and has repeatedly been suggested to be predictive of a species' olfactory capabilities. To test this assumption, we compiled a database of all published olfactory detection threshold values in mammals and used three sets of data on olfactory discrimination performance that employed the same structurally related monomolecular odour pairs with different mammal species. We extracted the number of functional olfactory receptor genes of the 20 mammal species for which we found data on olfactory sensitivity and/or olfactory discrimination performance from the Chordata Olfactory Receptor Database. We found that the overall olfactory detection thresholds significantly correlate with the number of functional olfactory receptor genes. Similarly, the overall proportion of successfully discriminated monomolecular odour pairs significantly correlates with the number of functional olfactory receptor genes. These results provide the first statistically robust evidence for the relationship between olfactory capabilities and their genomics correlates. However, when analysed individually, of the 44 monomolecular odourants for which data on olfactory sensitivity from at least five mammal species are available, only five yielded a significant correlation between olfactory detection thresholds and the number of functional olfactory receptors genes. Also, for the olfactory discrimination performance, no significant correlation was found for any of the 74 relationships between the proportion of successfully discriminated monomolecular odour pairs and the number of functional olfactory receptor genes. While only a rather limited amount of data on olfactory detection thresholds and olfactory discrimination scores in a rather limited number of mammal species is available so far, we conclude that the number of functional olfactory receptor genes may be a predictor of olfactory sensitivity and discrimination performance in mammals.


Assuntos
Receptores Odorantes , Olfato , Animais , Olfato/genética , Odorantes/análise , Receptores Odorantes/genética , Mamíferos/genética
7.
PeerJ ; 12: e16704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38192601

RESUMO

Grafting is widely applied in the cultivation of melon. In this study, 'Qinmi No.1' (Cucumis melo L.(QG)) and 'Ribenxuesong' (Cucurbita maxima Duch. (RG)) were used as rootstocks for 'Qingxin Yangjiaocui' (Cucumis melo L.). The results showed that grafting with muskmelon rootstocks had no significant effect on fruit aroma, but grafting with pumpkin rootstocks significantly reduced the odor intensity and odor preference scores of melon fruits. Compared with the fruits from self-grafted plants (SG), four new aromatic volatiles with a sweet smell were detected, the alcohol dehydrogenase (ADH) activity was significantly decreased at 30 DAP, but unaffected at 42 DAP in QG fruits. There was no difference for alcohol acetyltransferase (AAT) activity between QG and SG fruits. The expression level of CmADH2 was significantly higher at 30 DAP and 42 DAP, but CmAAT2 was significantly lower at 42 DAP in QG fruits compared with SG fruits. In RG fruits, the main aroma compounds including butanoic acid ethyl ester, 2-methyl-2-butene-1-al, and 2-methylheptan-1-al were absent, while the volatile compounds with unpleasant odor characteristics including trans, cis-2,6-nonadien-1-ol, (E,E)-2,4-heptadienal, octanoic acid, and styrene were detected. Compared with SG fruits, 1-nonanol and 1-heptanol with green odor characteristics were significantly increased, but eucalyptol and farnesene with fruity aroma characteristics were significantly decreased in RG fruits. The ADH activity of RG fruits was significantly lower than that of SG fruits at 30 DAP and the AAT activity was significantly lower than that of SG fruits at 42 DAP. In addition, the expression levels of CmADH and CmAAT homologs in RG fruits were significantly lower than those in SG or QG fruits. These results show that grafting with pumpkin rootstocks affected the main aroma components, reduced ADH and AAT activities, and down-regulated the expression levels of CmADHs and CmAATs in the melon fruits. This study reveals the mechanism of different rootstocks on melon fruit aroma quality, and lays a theoretical foundation for the selection of rootstocks in melon production. Future studies using overexpression or CRISPR/CAS system to obtain stable transgenic lines of genes encoding key aromatic volatiles, would be promising to effectively improve the flavor quality of melon.


Assuntos
Cucumis melo , Cucurbita , Odorantes , Frutas/genética , Álcool Desidrogenase , Olfato/genética
8.
Int J Biol Macromol ; 254(Pt 1): 127505, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37863136

RESUMO

Calosoma maximoviczi, a predatory pest beetle, poses a significant threat to wild silk farm production due to its predation on wild silkworms. Given the coexistence of this species with beneficial silkworms in the farm orchards, chemical pesticides are not an ideal solution for controlling its population. In this study, we employed a comprehensive multi-target RNA interference (RNAi) approach to disrupt the olfactory perception of C. maximoviczi through independently silencing 16 odorant receptors (ORs) in the respective genders. Specifically, gene-specific siRNAs were designed to target a panel of ORs, allowing us to investigate the specific interactions between odorant receptors and ligands within this species. Our investigation led to identifying four candidate siOR groups that effectively disrupted the beetle's olfactory tracking of various odorant ligands associated with different trophic levels. Furthermore, we observed sex-specific differences in innate RNAi responses reflected by subsequent gene expression, physiological and behavioral consequences, underscoring the complexity of olfactory signaling and emphasizing the significance of considering species/sex-specific traits when implementing pest control measures. These findings advance our understanding of olfactory coding patterns in C. maximoviczi beetles and establish a foundation for future research in the field of pest management strategies.


Assuntos
Besouros , Receptores Odorantes , Animais , Feminino , Masculino , Besouros/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Comportamento Predatório , Olfato/genética , Ligantes
9.
Clin Genet ; 105(4): 376-385, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38148624

RESUMO

An estimated 1 in 10 000 people are born without the ability to smell, a condition known as congenital anosmia, and about one third of those people have non-syndromic, or isolated congenital anosmia (ICA). Despite the significant impact of olfaction for our quality of life, the underlying causes of ICA remain largely unknown. Using whole exome sequencing (WES) in 10 families and 141 individuals with ICA, we identified a candidate list of 162 rare, segregating, deleterious variants in 158 genes. We confirmed the involvement of CNGA2, a previously implicated ICA gene that is an essential component of the olfactory transduction pathway. Furthermore, we found a loss-of-function variant in SREK1IP1 from the family gene candidate list, which was also observed in 5% of individuals in an additional non-family cohort with ICA. Although SREK1IP1 has not been previously associated with olfaction, its role in zinc ion binding suggests a potential influence on olfactory signaling. This study provides a more comprehensive understanding of the spectrum of genetic alterations and their etiology in ICA patients, which may improve the diagnosis, prognosis, and treatment of this disorder and lead to better understanding of the mechanisms governing basic olfactory function.


Assuntos
Transtornos do Olfato , Transtornos do Olfato/congênito , Qualidade de Vida , Humanos , Transtornos do Olfato/genética , Transtornos do Olfato/diagnóstico , Mutação , Transdução de Sinais , Olfato/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética
10.
J Vis Exp ; (201)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38047558

RESUMO

Mosquitoes are effective vectors of deadly diseases and can navigate their chemical environment using chemosensory receptors expressed in their olfactory appendages. Understanding how chemosensory receptors are spatially organized in the peripheral olfactory appendages can offer insights into how odor is encoded in the mosquito olfactory system and inform new ways to combat the spread of mosquito-borne diseases. The emergence of third-generation hybridization chain reaction RNA whole-mount fluorescence in situ hybridization (HCR RNA WM-FISH) allows for spatial mapping and simultaneous expression profiling of multiple chemosensory genes. Here, we describe a stepwise approach for performing HCR RNA WM-FISH on the Anopheles mosquito antenna and maxillary palp. We investigated the sensitivity of this technique by examining the expression profile of ionotropic olfactory receptors. We asked if the HCR WM-FISH technique described was suitable for multiplexed studies by tethering RNA probes to three spectrally distinct fluorophores. Results provided evidence that HCR RNA WM-FISH is robustly sensitive to simultaneously detect multiple chemosensory genes in the antenna and maxillary palp olfactory appendages. Further investigations attest to the suitability of HCR WM-FISH for co-expression profiling of double and triple RNA targets. This technique, when applied with modifications, could be adaptable to localize genes of interest in the olfactory tissues of other insect species or in other appendages.


Assuntos
Anopheles , Receptores Odorantes , Animais , RNA/metabolismo , Hibridização in Situ Fluorescente , Mosquitos Vetores , Olfato/genética , Anopheles/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
11.
J Biosci ; 482023.
Artigo em Inglês | MEDLINE | ID: mdl-37929819

RESUMO

The fruit fly, Drosophila melanogaster, has been one of the finest systems for decoding myriad puzzles across different domains of biology. Beyond addressing the fundamental problems, it has been used as a fantastic model organism for human disease research. Being an insect, Drosophila has a robust and advanced olfactory system that has been used many times as a model neuronal circuit to study fundamental questions in neurobiology. The circuit is well-explored at anatomical, physiological, and functional levels. It provides several advantages for the study of neurobiological disorders, such as spatiotemporally regulated misexpression or knockdown of disease proteins, genetic tractability, well-studied neuroanatomy, simple behavioural training paradigms, and quantifiable assays. Hence, Drosophila olfaction has been a favourite choice for the study of several neurodegenerative and neurodevelopmental disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, fragile X syndrome, etc. This review aims to discuss earlier progress and future scope in using the Drosophila olfactory system for modelling human neurological pathophysiology for conducting fundamental and applied research. A major goal of research in biological science is to alleviate human disease burden. Diverse experimental systems are required to address different aspects of disease aetiology. Drosophila is one of the finest in vivo systems; its olfactory system is arguably the most well-characterized circuit for modelling human neurological disorders. A vast amount of research has been conducted to decipher cellular, molecular, and even cognitive aspects of human disorders using the Drosophila olfactory system. This review aims at summarizing such research progress to date and critically analysing the suitability of this system for modelling more complex neurological conditions.


Assuntos
Doença de Alzheimer , Drosophila , Humanos , Animais , Drosophila/genética , Drosophila melanogaster/genética , Olfato/genética , Modelos Animais de Doenças
12.
J Mol Evol ; 91(6): 793-805, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37906255

RESUMO

Olfaction is a crucial capability for most vertebrates and is realized through olfactory receptors in the nasal cavity. The enormous diversity of olfactory receptors has been created by gene duplication, following a birth-and-death model of evolution. The olfactory receptor genes of the amphibians have received relatively little attention up to now, although recent studies have increased the number of species for which data are available. This study analyzed the diversity and chromosomal distribution of the OR genes of three anuran species (Engystomops pustulosus, Bufo bufo and Hymenochirus boettgeri). The OR genes were identified through searches for homologies, and sequence filtering and alignment using bioinformatic tools and scripts. A high diversity of OR genes was found in all three species, ranging from 917 in B. bufo to 1194 in H. boettgeri, and a total of 2076 OR genes in E. pustulosus. Six OR groups were recognized using an evolutionary gene tree analysis. While E. pustulosus has one of the highest numbers of genes of the gamma group (which detect airborne odorants) yet recorded in an anuran, B. bufo presented the smallest number of pseudogene sequences ever identified, with no pseudogenes in either the beta or epsilon groups. Although H. boettgeri shares many morphological adaptations for an aquatic lifestyle with Xenopus, and presented a similar number of genes related to the detection of water-soluble odorants, it had comparatively far fewer genes related to the detection of airborne odorants. This study is the first to describe the complete OR repertoire of the three study species and represents an important contribution to the understanding of the evolution and function of the sense of smell in vertebrates.


Assuntos
Receptores Odorantes , Animais , Filogenia , Receptores Odorantes/genética , Pseudogenes/genética , Anuros/genética , Olfato/genética
13.
J Neurosci ; 43(46): 7799-7811, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37739796

RESUMO

Individuals with mutations in a single copy of the SHANK3 gene present with social interaction deficits. Although social behavior in mice depends on olfaction, mice with mutations in a single copy of the Shank3 gene do not have olfactory deficits in simple odor identification tasks (Drapeau et al., 2018). Here, we tested olfaction in mice with mutations in a single copy of the Shank3 gene (Peça et al., 2011) using a complex odor task and imaging in awake mice. Average glomerular responses in the olfactory bulb of Shank3B +/- were correlated with WT mice. However, there was increased trial-to-trial variability in the odor responses for Shank3B +/- mice. Simulations demonstrated that this increased variability could affect odor detection in novel environments. To test whether performance was affected by the increased variability, we tested target odor recognition in the presence of novel background odors using a recently developed task (Li et al., 2023). Head-fixed mice were trained to detect target odors in the presence of known background odors. Performance was tested using catch trials where the known background odors were replaced by novel background odors. We compared the performance of eight Shank3B +/- mice (five males, three females) on this task with six WT mice (three males, three females). Performance for known background odors and learning rates were similar between Shank3B +/- and WT mice. However, when tested with novel background odors, the performance of Shank3B +/- mice dropped to almost chance levels. Thus, haploinsufficiency of the Shank3 gene causes a specific deficit in odor detection in novel environments. Our results are discussed in the context of other Shank3 mouse models and have implications for understanding olfactory function in neurodevelopmental disorders.SIGNIFICANCE STATEMENT People and mice with mutations in a single copy in the synaptic gene Shank3 show features seen in autism spectrum disorders, including social interaction deficits. Although mice social behavior uses olfaction, mice with mutations in a single copy of Shank3 have so far not shown olfactory deficits when tested using simple tasks. Here, we used a recently developed task to show that these mice could identify odors in the presence of known background odors as well as wild-type mice. However, their performance fell below that of wild-type mice when challenged with novel background odors. This deficit was also previously reported in the Cntnap2 mouse model of autism, suggesting that odor detection in novel backgrounds is a general deficit across mouse models of autism.


Assuntos
Haploinsuficiência , Odorantes , Humanos , Masculino , Feminino , Camundongos , Animais , Olfato/genética , Comportamento Social , Bulbo Olfatório/fisiologia , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética
14.
Insect Biochem Mol Biol ; 162: 104012, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37743031

RESUMO

The order Isopoda contains both aquatic and terrestrial species, among which Hemilepistus reaumurii, which lives in arid environments and is the most adapted to terrestrial life. Olfaction has been deeply investigated in insects while it has received very limited attention in other arthropods, particularly in terrestrial crustaceans. In insects, soluble proteins belonging to two main families, Odorant Binding Proteins (OBPs) and Chemosensory Proteins (CSPs), are contained in the olfactory sensillar lymph and are suggested to act as carriers of hydrophobic semiochemicals to or from membrane-bound olfactory receptors. Other protein families, namely Nieman-Pick type 2 (NPC2) and Lipocalins (LCNs) have been also reported as putative odorant carriers in insects and other arthropod clades. In this study, we have sequenced and analysed the transcriptomes of antennae and of the first pair of legs of H. reaumurii focusing on soluble olfactory proteins. Interestingly, we have found 13 genes encoding CSPs, whose sequences differ from those of the other arthropod clades, including non-isopod crustaceans, for the presence of two additional cysteine residues, besides the four conserved ones. Binding assays on two of these proteins showed strong affinities for fatty acids and long-chain unsaturated esters and aldehydes, putative semiochemicals for this species.


Assuntos
Artrópodes , Isópodes , Receptores Odorantes , Animais , Feromônios/metabolismo , Isópodes/genética , Isópodes/metabolismo , Insetos/metabolismo , Transcriptoma , Olfato/genética , Proteínas de Insetos/metabolismo , Artrópodes/genética , Receptores Odorantes/metabolismo , Antenas de Artrópodes/metabolismo , Filogenia , Perfilação da Expressão Gênica
15.
Parkinsonism Relat Disord ; 115: 105815, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37611509

RESUMO

INTRODUCTION: Olfactory impairment and Parkinson's disease (PD) may share common genetic and environmental risk factors. This study investigates the association of a PD polygenic risk score (PRS) with olfaction, and whether the associations are modified by environmental exposures of PM2.5, NO2, or smoking. METHODS: This analysis included 3358 women (aged 50-80) from the Sister Study with genetic data and results from the Brief Smell Identification Test (B-SIT) administered in 2018-2019. PD PRS was calculated using 90 single nucleotide polymorphisms. Olfactory impairment was defined with different B-SIT cutoffs, and PD diagnosis was adjudicated via expert review. We report odds ratios (ORs) and 95% confidence intervals (CIs) from multivariable logistic regression. RESULTS: As expected, PD PRS was strongly associated with the odds of having PD (OR highest vs. lowest quartile = 3.79 (1.64, 8.73)). The highest PRS quartile was also associated with olfactory impairment, with OR ranging from 1.24 (0.98, 1.56) for a B-SIT cutoff of 9 to 1.42 (1.04, 1.92) for a cutoff of 6. For individual B-SIT items, the highest PRS quartile was generally associated with lower odds of correctly identifying the odorant, albeit only statistically significant for pineapple (0.72 (0.56, 0.94), soap (0.76 (0.58, 0.99)) and rose (0.70 (0.54, 0.92)). The association of PD PRS with olfactory impairment was not modified by airborne environmental exposures or smoking. CONCLUSION: These preliminary data suggest that high PD genetic susceptibility is associated with olfactory impairment in middle-aged and older women.


Assuntos
Transtornos do Olfato , Doença de Parkinson , Pessoa de Meia-Idade , Humanos , Feminino , Idoso , Doença de Parkinson/epidemiologia , Doença de Parkinson/genética , Doença de Parkinson/complicações , Olfato/genética , Transtornos do Olfato/genética , Fatores de Risco , Fumar
16.
Genes (Basel) ; 14(5)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37239360

RESUMO

MicroRNAs (miRNAs) play a vital role in the nerve regulation of honey bees (Apis mellifera). This study aims to investigate the differences in expression of miRNAs in a honey bee's brain for olfactory learning tasks and to explore their potential role in a honey bee's olfactory learning and memory. In this study, 12 day old honey bees with strong and weak olfactory performances were utilized to investigate the influence of miRNAs on olfactory learning behavior. The honey bee brains were dissected, and a small RNA-seq technique was used for high-throughput sequencing. The data analysis of the miRNA sequences revealed that 14 differentially expressed miRNAs (DEmiRNAs) between the two groups, strong (S) and weak (W), for olfactory performance in honey bees were identified, which included seven up-regulated and seven down-regulated. The qPCR verification results of the 14 miRNAs showed that four miRNAs (miR-184-3p, miR-276-3p, miR-87-3p, and miR-124-3p) were significantly associated with olfactory learning and memory. The target genes of these DEmiRNAs were subjected to the GO database annotation and KEGG pathway enrichment analyses. The functional annotation and pathway analysis showed that the neuroactive ligand-receptor interaction pathway, oxidative phosphorylation, biosynthesis of amino acids, pentose phosphate pathway, carbon metabolism, and terpenoid backbone biosynthesis may be a great important pathway related to olfactory learning and memory in honey bees. Our findings together further explained the relationship between olfactory performance and the brain function of honey bees at the molecular level and provides a basis for further study on miRNAs related to olfactory learning and memory in honey bees.


Assuntos
Aprendizagem , MicroRNAs , Abelhas/genética , Animais , Encéfalo/metabolismo , Condicionamento Clássico , MicroRNAs/genética , MicroRNAs/metabolismo , Olfato/genética
17.
Aust N Z J Psychiatry ; 57(10): 1367-1374, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36967530

RESUMO

OBJECTIVE: Olfactory impairments, including identification, have been reported in patients with schizophrenia, while few studies have examined the olfactory function of unaffected first-degree relatives of patients with schizophrenia, and the sample sizes of first-degree relatives were relatively small. Here, we investigated olfactory identification ability among patients with schizophrenia, first-degree relatives and healthy controls (HCs) using relatively large sample sizes at a single institute. METHODS: To assess olfactory identification ability, the open essence odorant identification test was administered to 172 schizophrenia patients, 75 first-degree relatives and 158 healthy controls. Differences in olfactory identification and correlations between olfactory ability and clinical variables were examined among these participants. RESULTS: We found a significant difference in olfactory identification ability among the diagnostic groups (p = 7.65 × 10-16). Schizophrenia patients displayed lower olfactory identification ability than first-degree relatives (Cohen's d = -0.57, p = 3.13 × 10-6) and healthy controls (d = -1.00, p = 2.19 × 10-16). Furthermore, first-degree relatives had lower olfactory identification ability than healthy controls (d = -0.29, p = 0.039). Olfactory identification ability moderately and negatively correlated with the duration of illness (r = -0.41, p = 1.88 × 10-8) and negative symptoms (r = -0.28, p = 1.99 × 10-4) in schizophrenia patients, although the correlation with the duration of illness was affected by aging (r = -0.24). CONCLUSIONS: Our results demonstrated that schizophrenia patients have impaired olfactory identification ability compared with first-degree relatives and healthy controls, and the impaired olfactory identification ability of first-degree relatives was intermediate between those in schizophrenia patients and healthy controls. Olfactory identification ability was relatively independent of clinical variables. Therefore, olfactory identification ability might be an intermediate phenotype for schizophrenia.


Assuntos
Transtornos do Olfato , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Voluntários Saudáveis , Família , Olfato/genética , Transtornos do Olfato/diagnóstico , Transtornos do Olfato/genética
18.
Lab Invest ; 103(4): 100051, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870285

RESUMO

Olfactory disorders, which are closely related to cognitive deterioration, can be caused by several factors, including infections, such as COVID-19; aging; and environmental chemicals. Injured olfactory receptor neurons (ORNs) regenerate after birth, but it is unclear which receptors and sensors are involved in ORN regeneration. Recently, there has been great focus on the involvement of transient receptor potential vanilloid (TRPV) channels, which are nociceptors expressed on sensory nerves during the healing of damaged tissues. The localization of TRPV in the olfactory nervous system has been reported in the past, but its function there are unclear. Here, we investigated how TRPV1 and TRPV4 channels are involved in ORN regeneration. TRPV1 knockout (KO), TRPV4 KO, and wild-type (WT) mice were used to model methimazole-induced olfactory dysfunction. The regeneration of ORNs was evaluated using olfactory behavior, histologic examination, and measurement of growth factors. Both TRPV1 and TRPV4 were found to be expressed in the olfactory epithelium (OE). TRPV1, in particular, existed near ORN axons. TRPV4 was marginally expressed in the basal layer of the OE. The proliferation of ORN progenitor cells was reduced in TRPV1 KO mice, which delayed ORN regeneration and the improvement of olfactory behavior. Postinjury OE thickness improved faster in TRPV4 KO mice than WT mice but without acceleration of ORN maturation. The nerve growth factor and transforming growth factor ß levels in TRPV1 KO mice were similar to those in WT mice, and the transforming growth factor ß level was higher than TRPV4 KO mice. TRPV1 was involved in stimulating the proliferation of progenitor cells. TRPV4 modulated their proliferation and maturation. ORN regeneration was regulated by the interaction between TRPV1 and TRPV4. However, in this study, TRPV4 involvement was limited compared with TRPV1. To our knowledge, this is the first study to demonstrate the involvement of TRPV1 and TRPV4 in OE regeneration.


Assuntos
Condutos Olfatórios , Canais de Potencial de Receptor Transitório , Animais , Camundongos , COVID-19/complicações , Camundongos Knockout , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Condutos Olfatórios/metabolismo , Olfato/genética , Olfato/fisiologia
19.
PLoS Biol ; 21(1): e3001984, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719927

RESUMO

Understanding of the neural bases for complex behaviors in Hymenoptera insect species has been limited by a lack of tools that allow measuring neuronal activity simultaneously in different brain regions. Here, we developed the first pan-neuronal genetic driver in a Hymenopteran model organism, the honey bee, and expressed the calcium indicator GCaMP6f under the control of the honey bee synapsin promoter. We show that GCaMP6f is widely expressed in the honey bee brain, allowing to record neural activity from multiple brain regions. To assess the power of this tool, we focused on the olfactory system, recording simultaneous responses from the antennal lobe, and from the more poorly investigated lateral horn (LH) and mushroom body (MB) calyces. Neural responses to 16 distinct odorants demonstrate that odorant quality (chemical structure) and quantity are faithfully encoded in the honey bee antennal lobe. In contrast, odor coding in the LH departs from this simple physico-chemical coding, supporting the role of this structure in coding the biological value of odorants. We further demonstrate robust neural responses to several bee pheromone odorants, key drivers of social behavior, in the LH. Combined, these brain recordings represent the first use of a neurogenetic tool for recording large-scale neural activity in a eusocial insect and will be of utility in assessing the neural underpinnings of olfactory and other sensory modalities and of social behaviors and cognitive abilities.


Assuntos
Cálcio , Olfato , Abelhas/genética , Animais , Olfato/genética , Odorantes , Encéfalo/fisiologia , Feromônios/genética
20.
Trends Genet ; 39(2): 154-166, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36414481

RESUMO

Gene-editing technologies have revolutionized the field of mosquito sensory biology. These technologies have been used to knock in reporter genes in-frame with neuronal genes and tag specific mosquito neurons to detect their activities using binary expression systems. Despite these advances, novel tools still need to be developed to elucidate the transmission of olfactory signals from the periphery to the brain. Here, we propose the development of a set of tools, including novel driver lines as well as sensors of neuromodulatory activities, which can advance our knowledge of how sensory input triggers behavioral outputs. This information can change our understanding of mosquito neurobiology and lead to the development of strategies for mosquito behavioral manipulation to reduce bites and disease transmission.


Assuntos
Culicidae , Animais , Culicidae/genética , Olfato/genética , Edição de Genes , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...